207 research outputs found

    Relationship between LIBS Ablation and Pit Volume for Geologic Samples: Applications for in situ Absolute Geochronology

    Get PDF
    In planetary sciences, in situ absolute geochronology is a scientific and engineering challenge. Currently, the age of the Martian surface can only be determined by crater density counting. However this method has significant uncertainties and needs to be calibrated with absolute ages. We are developing an instrument to acquire in situ absolute geochronology based on the KAr method. The protocol is based on the laser ablation of a rock by hundreds of laser pulses. Laser Induced Breakdown Spectroscopy (LIBS) gives the potassium content of the ablated material and a mass spectrometer (quadrupole or ion trap) measures the quantity of 40Ar released. In order to accurately measure the quantity of released 40Ar in cases where Ar is an atmospheric constituent (e.g., Mars), the sample is first put into a chamber under high vacuum. The 40Arquantity, the concentration of K and the estimation of the ablated mass are the parameters needed to give the age of the rocks. The main uncertainties with this method are directly linked to the measures of the mass (typically some g) and of the concentration of K by LIBS (up to 10%). Because the ablated mass is small compared to the mass of the sample, and because material is redeposited onto the sample after ablation, it is not possible to directly measure the ablated mass. Our current protocol measures the ablated volume and estimates the sample density to calculate ablated mass. The precision and accuracy of this method may be improved by using knowledge of the sample's geologic properties to predict its response to laser ablation, i.e., understanding whether natural samples have a predictable relationship between laser energy deposited and resultant ablation volume. In contrast to most previous studies of laser ablation, theoretical equations are not highly applicable. The reasons are numerous, but the most important are: a) geologic rocks are complex, polymineralic materials; b) the conditions of ablation are unusual (for example, variable vacuum pressure), and c) the ablation is made with hundreds of successive laser pulses. In this work, we aim to understand the effects that occur on LIBS spectra when a homogeneous rock or a mineral is ablated under high vacuum. Understanding these effects is important to define best practices for LIBS measurements and may lead to improved measurement (or possibly prediction) of the ablated volume. We will describe our laboratory approach and first results, and discuss its utility for situ absolute geochronology campaigns

    Continued Development of in Situ Geochronology for Planetary Missions

    Get PDF
    The instrument 'Potassium (K) Argon Laser Experiment' (KArLE) is developed and designed for in situ absolute dating of rocks on planetary surfaces. It is based on the K-Ar dating method and uses the Laser Induced Breakdown Spectroscopy - Laser Ablation - Quadrupole Mass Spectrometry (LIBSLA- QMS) technique. We use a dedicated interface to combine two instruments similar to SAM of Mars Science Laboratory (for the QMS) and ChemCam (for the LA and LIBS). The prototype has demonstrated that KArLE is a suitable and promising instrument for in situ absolute dating

    Continued Development of in Situ Geochronology for Planetary Using KArLE (Potassium-Argon Laser Experiment)

    Get PDF
    Geochronology is a fundamental measurement for planetary samples, providing the ability to establish an absolute chronology for geological events, including crystallization history, magmatic evolution, and alteration events, and providing global and solar system context for such events. The capability for in situ geochronology will open up the ability for geochronology to be accomplished as part of lander or rover complement, on multiple samples rather than just those returned. An in situ geochronology package can also complement sample return missions by identifying the most interesting rocks to cache or return to Earth. The K-Ar radiometric dating approach to in situ dating has been validated by the Curiosity rover on Mars as well as several laboratories on Earth. Several independent projects developing in situ rock dating for planetary samples, based on the K-Ar method, are giving promising results. Among them, the Potassium (K)-Argon Laser Experiment (KArLE) at MSFC is based on techniques already in use for in planetary exploration, specifically, Laser-induced Breakdown Spectroscopy (LIBS, used on the Curiosity Chemcam), mass spectroscopy (used on multiple planetary missions, including Curiosity, ExoMars, and Rosetta), and optical imaging (used on most missions)

    Developing a Relationship Between LIBS Ablation and Pit Volume for In Situ Dating of Geologic Samples

    Get PDF
    In planetary exploration, in situ absolute geochronology is an important measurement. Thus far, on Mars, the age of the surface has largely been determined by crater density counting, which gives relative ages. These ages can have significant uncertainty as they depend on many poorly constrained parameters. More than that, the curves must be tied to absolute ages to relate geologic timescales on Mars to the rest of the solar system. Thus far, only the lost lander Beagle 2 was designed to conduct absolute geochronology measurements, though some recent attempts using MSL Curiosity show that this investigation is feasible (Reference Farley here) and should be strongly encouraged for future flight

    Updates of the KArLE Experiment: New Libs Calibration Under High Vacuum for the Quantification of Potassium in Basalt for In Situ Geochronology

    Get PDF
    In planetary exploration, in situ absolute geochronology is one of the main important measurements that needs to be accomplished. Until now, on Mars, the age of the surface is only determined by crater density counting, which gives relative ages. These ages can have a lot of uncertainty as they depend on many parameters. More than that, the curves must be ties to absolute ages. Thus far, only the lost lander Beagle 2 was designed to conduct absolute geochronology measurements, though some recent attempts using MSL Curiosity show that this investigation is feasible and should be strongly encouraged for future flight. Experimental: The Potassium (K)-Argon Laser Experiment (KArLE) is being developed at MSFC through the NASA Planetary Instrument Definition and Development Program (PIDDP). The goal of this experiment is to provide in situ geochronology based on the K-Ar method. A laser ablates a rock under high vacuum, creating a plasma which is sensed by an optical spectrometer to do Laser Induced Breakdown Spectroscopy (LIBS). The ablated material frees gases, including radiogenic 40Ar,which is measured by a mass spectrometer (MS). As the potassium is a content and the 40Ar is a quantity, the ablated mass needed in order to relate them. The mass is given by the product of the ablated volume by the density of this material. So we determine the mineralogy of the ablated material with the LIBS spectra and images and calculate its density. The volume of the pit is measured by using microscopy. LIBS measurement of K under high vacuum: Three independant projects [1, 2, 3] including KArLE, are developing geochronological instruments based on this LA-LIBS-MS method. Despite several differences in their setup, all of them have validated the methods with analyses and ages. However, they all described difficulties with the LIBS measurements of K [3,4]. At ambient pressure, the quantification of K by LIBS on geological materials can be accurate [5]. However the protocol of the LA-LIBS-MS experiment required hundreds of shots under high vacuum in order to free enough 40Ar* to be measured by the QMS. This long duration of ablation may induces significant changes in the LIBS spectra. The pressure may increases by orders of magnitudewithin the chamber and the laser pit geometry can change the effectiveness of ablation and intensity of plasma light received. These effects introduce variation between the first and last spectra and so the quantification of K is more complex. The ablation of one crater can give, depending on the protocol of acquisition, from tens to hundreds of spectra. Protocol and results: We are in the process of further characterizing the variation introduced into LIBS spectra by the use of hundreds of laser shots, and definining a protocol that can be used to ensure accuracy and reporoducibility in the results.We are using natural rock powder standards fused in a furnace, as well as mars analog samples with known K content. We will show the result of the calibration and some new statistical approaches in order to apprehend the effects of the long time ablation on rocks under high vacuum

    Exploration of Finite 2D Square Grid by a Metamorphic Robotic System

    Full text link
    We consider exploration of finite 2D square grid by a metamorphic robotic system consisting of anonymous oblivious modules. The number of possible shapes of a metamorphic robotic system grows as the number of modules increases. The shape of the system serves as its memory and shows its functionality. We consider the effect of global compass on the minimum number of modules necessary to explore a finite 2D square grid. We show that if the modules agree on the directions (north, south, east, and west), three modules are necessary and sufficient for exploration from an arbitrary initial configuration, otherwise five modules are necessary and sufficient for restricted initial configurations

    Strangeness in Neutron Stars

    Get PDF
    It is generally agreed on that the tremendous densities reached in the centers of neutron stars provide a high-pressure environment in which several intriguing particles processes may compete with each other. These range from the generation of hyperons to quark deconfinement to the formation of kaon condensates and H-matter. There are theoretical suggestions of even more exotic processes inside neutron stars, such as the formation of absolutely stable strange quark matter. In the latter event, neutron stars would be largely composed of strange quark matter possibly enveloped in a thin nuclear crust. This paper gives a brief overview of these striking physical possibilities with an emphasis on the role played by strangeness in neutron star matter, which constitutes compressed baryonic matter at ultra-high baryon number density but low temperature which is no accessible to relativistic heavy ion collision experiments.Comment: 16 pages, 5 figures, 3 tables; Accepted for publication in the Proceedings of the International Workshop on Astronomy and Relativistic Astrophysics (IWARA) 2005, Int. J. Mod. Phys.

    Prototype tests for the ALICE TRD

    Full text link
    A Transition Radiation Detector (TRD) has been designed to improve the electron identification and trigger capability of the ALICE experiment at the Large Hadron Collider (LHC) at CERN. We present results from tests of a prototype of the TRD concerning pion rejection for different methods of analysis over a momentum range from 0.7 to 2 GeV/c. We investigate the performance of different radiator types, composed of foils, fibres and foams.Comment: Presented at the IEEE Nuclear Science Symposium and Medical Imaging Conference, Lyon, October 15-20, 2000 (accepted for publication in IEEE TNS), Latex (IEEEtran.cls), 7 pages, 11 eps figure

    Analysis of kaon spectra at SIS energies - what remains from the KN potential

    Full text link
    We study the reaction Au+Au at 1.48 AGeV and analyze the influence of the KN optical potential on cm spectra and azimuthal distributions at mid-rapidity. We find a significant change of the yields but only slight changes in the shapes of the distributions when turning off the optical potential. However, the spectra show contributions from different reaction times, where early kaons contribute stronger to higher momenta and late kaons to lower momenta. Azimuthal distributions of the kaons at mid-rapidity show a strong centrality dependence. Their shape is influenced by the KN optical potential as well as by re-scattering.Comment: SQM 2003 proceedings, 4 figures, 6 page
    corecore